Learning with noisy-labels has become an important research topic in computer vision where state-of-the-art (SOTA) methods explore: 1) prediction disagreement with co-teaching strategy that updates two models when they disagree on the prediction of training samples; and 2) sample selection to divide the training set into clean and noisy sets based on small training loss. However, the quick convergence of co-teaching models to select the same clean subsets combined with relatively fast overfitting of noisy labels may induce the wrong selection of noisy label samples as clean, leading to an inevitable confirmation bias that damages accuracy. In this paper, we introduce our noisy-label learning approach, called Asymmetric Co-teaching (AsyCo), which introduces novel prediction disagreement that produces more consistent divergent results of the co-teaching models, and a new sample selection approach that does not require small-loss assumption to enable a better robustness to confirmation bias than previous methods. More specifically, the new prediction disagreement is achieved with the use of different training strategies, where one model is trained with multi-class learning and the other with multi-label learning. Also, the new sample selection is based on multi-view consensus, which uses the label views from training labels and model predictions to divide the training set into clean and noisy for training the multi-class model and to re-label the training samples with multiple top-ranked labels for training the multi-label model. Extensive experiments on synthetic and real-world noisy-label datasets show that AsyCo improves over current SOTA methods.
translated by 谷歌翻译
最先进的(SOTA)深度学习乳房X线照片分类器接受了弱标记的图像训练,通常依赖于产生有限解释性预测的全球模型,这是他们成功地转化为临床实践的关键障碍。另一方面,基于原型的模型通过将预测与训练图像原型相关联,改善了可解释性,但是它们的准确性不如全球模型,其原型往往具有差的多样性。我们通过BraixProtopnet ++的建议解决了这两个问题,该问题通过将基于原型的模型结合起来,为全局模型增添了解释性。 BraixProtopnet ++在训练基于原型的模型以提高合奏的分类精度时,会提炼全局模型的知识。此外,我们提出了一种方法来通过保证所有原型都与不同的训练图像相关联,以增加原型多样性。对弱标记的私人和公共数据集进行的实验表明,BraixProtopnet ++的分类精度比基于SOTA Global和基于原型的模型具有更高的分类精度。使用病变定位来评估模型可解释性,我们显示BraixProtopnet ++比其他基于原型的模型和全球模型的事后解释更有效。最后,我们表明,BraixProtopnet ++学到的原型的多样性优于基于SOTA原型的方法。
translated by 谷歌翻译
在分析筛查乳房X线照片时,放射科医生可以自然处理每个乳房的两个同侧视图,即颅底审计(CC)和中外侧 - 粘合剂(MLO)视图。这些多个相关图像提供了互补的诊断信息,并可以提高放射科医生的分类准确性。不幸的是,大多数现有的深度学习系统,受过全球标记的图像培训,缺乏从这些多种观点中共同分析和整合全球和本地信息的能力。通过忽略筛选发作的多个图像中存在的潜在有价值的信息,人们限制了这些系统的潜在准确性。在这里,我们提出了一种新的多视图全球分析方法,该方法基于全球一致性学习和对乳房X线照片中同侧观点的局部同时学习,模仿放射科医生的阅读程序。广泛的实验表明,在大规模的私人数据集和两个公开可用的数据集上,我们的模型在分类准确性和概括方面优于竞争方法,在该数据集和两个公开可用的数据集上,模型仅受到全球标签的培训和测试。
translated by 谷歌翻译
我们研究不同损失功能对医学图像病变细分的影响。尽管在处理自然图像时,跨凝结(CE)损失是最受欢迎的选择,但对于生物医学图像分割,由于其处理不平衡的情况,软骰子损失通常是首选的。另一方面,这两个功能的组合也已成功地应用于此类任务中。一个较少研究的问题是在存在分布(OOD)数据的情况下所有这些损失的概括能力。这是指在测试时间出现的样本,这些样本是从与训练图像不同的分布中得出的。在我们的情况下,我们将模型训练在始终包含病变的图像上,但是在测试时间我们也有无病变样品。我们通过全面的实验对内窥镜图像和糖尿病脚图像的溃疡分割进行了全面的实验,分析了不同损失函数对分布性能的最小化对分布性能的影响。我们的发现令人惊讶:在处理OOD数据时,CE-DICE损失组合在分割分配图像中表现出色,这使我们建议通过这种问题采用CE损失,因为它的稳健性和能够概括为OOD样品。可以在\ url {https://github.com/agaldran/lesion_losses_ood}找到与我们实验相关的代码。
translated by 谷歌翻译
在深度学习的生态系统中,嘈杂的标签是不可避免的,但很麻烦,因为模型可以轻松地过度拟合它们。标签噪声有许多类型,例如对称,不对称和实例依赖性噪声(IDN),而IDN是唯一取决于图像信息的类型。鉴于标签错误很大程度上是由于图像中存在的视觉类别不足或模棱两可的信息引起的,因此对图像信息的这种依赖性使IDN成为可研究标签噪声的关键类型。为了提供一种有效的技术来解决IDN,我们提出了一种称为InstanceGM的新图形建模方法,该方法结合了判别和生成模型。实例GM的主要贡献是:i)使用连续的Bernoulli分布来培训生成模型,提供了重要的培训优势,ii)探索最先进的噪声标签歧视分类器来生成清洁标签来自实例依赖性嘈杂标签样品。 InstanceGM具有当前嘈杂的学习方法的竞争力,尤其是在使用合成和现实世界数据集的IDN基准测试中,我们的方法比大多数实验中的竞争对手都表现出更好的准确性。
translated by 谷歌翻译
标签噪声在大型现实世界数据集中很常见,其存在会损害深神网络的训练过程。尽管几项工作集中在解决此问题的培训策略上,但很少有研究评估数据增强作为培训深神经网络的设计选择。在这项工作中,我们分析了使用不同数据增强的模型鲁棒性及其在嘈杂标签的存在下对培训的改进。我们评估了数据集MNIST,CIFAR-10,CIFAR-100和现实世界数据集Clothing1M的最新和经典数据增强策略,具有不同级别的合成噪声。我们使用精度度量评估方法。结果表明,与基线相比,适当的数据增强可以大大提高模型的稳健性,可将相对最佳测试准确性的177.84%提高到177.84%的相对最佳测试准确性,而无需增强,并且随着绝对值增加了6%,而该基线的绝对值增加了6%最先进的Dividemix培训策略。
translated by 谷歌翻译
分类是数据挖掘和机器学习领域中研究最多的任务之一,并且已经提出了文献中的许多作品来解决分类问题,以解决多个知识领域,例如医学,生物学,安全性和遥感。由于没有单个分类器可以为各种应用程序取得最佳结果,因此,一个很好的选择是采用分类器融合策略。分类器融合方法成功的关键点是属于合奏的分类器之间多样性和准确性的结合。借助文献中可用的大量分类模型,一个挑战是选择最终分类系统的最合适的分类器,从而产生了分类器选择策略的需求。我们通过基于一个称为CIF-E(分类器,初始化,健身函数和进化算法)的四步协议的分类器选择和融合的框架来解决这一点。我们按照提出的CIF-E协议实施和评估24种各种集合方法,并能够找到最准确的方法。在文献中最佳方法和许多其他基线中,还进行了比较分析。该实验表明,基于单变量分布算法(UMDA)的拟议进化方法可以超越许多著名的UCI数据集中最新的文献方法。
translated by 谷歌翻译
元学习是一种处理不平衡和嘈杂标签学习的有效方法,但它取决于验证集,其中包含随机选择,手动标记和平衡的分布式样品。该验证集的随机选择和手动标记和平衡不仅是元学习的最佳选择,而且随着类的数量,它的缩放范围也很差。因此,最近的元学习论文提出了临时启发式方法来自动构建和标记此验证集,但是这些启发式方法仍然是元学习的最佳选择。在本文中,我们分析了元学习算法,并提出了新的标准来表征验证集的实用性,基于:1)验证集的信息性; 2)集合的班级分配余额; 3)集合标签的正确性。此外,我们提出了一种新的不平衡的嘈杂标签元学习(INOLML)算法,该算法会自动构建通过上面的标准最大化其实用程序来构建验证。我们的方法比以前的元学习方法显示出显着改进,并在几个基准上设定了新的最新技术。
translated by 谷歌翻译
深层神经网络目前为显微镜图像细胞分割提供了令人鼓舞的结果,但是它们需要大规模标记的数据库,这是一个昂贵且耗时的过程。在这项工作中,我们通过将自我监督与半监督的学习相结合来放松标签要求。我们提出了基于边缘的地图的预测,以自我监督未标记的图像的训练,该图像与少数标记的图像的监督培训相结合,用于学习分割任务。在我们的实验中,我们在几次显微镜图像细胞分割基准上进行了评估,并表明只有少数注释的图像,例如原始训练集的10%足以让我们的方法与1到10次的完全注释的数据库达到类似的性能。我们的代码和训练有素的模型公开可用
translated by 谷歌翻译
多模式学习通过在预测过程中同样组合多个输入数据模式来重点关注培训模型。但是,这种相等的组合可能不利于预测准确性,因为不同的方式通常伴随着不同水平的不确定性。通过几种方法研究了使用这种不确定性来组合模式,但是成功有限,因为这些方法旨在处理特定的分类或细分问题,并且不能轻易地转化为其他任务,或者遭受数值的不稳定性。在本文中,我们提出了一种新的不确定性多模式学习者,该学习者通过通过跨模式随机网络预测(CRNP)测量特征密度来估计不确定性。 CRNP旨在几乎不需要适应来在不同的预测任务之间转换,同时进行稳定的培训过程。从技术角度来看,CRNP是探索随机网络预测以估算不确定性并结合多模式数据的第一种方法。对两个3D多模式医学图像分割任务和三个2D多模式计算机视觉分类任务的实验显示了CRNP的有效性,适应性和鲁棒性。此外,我们提供了有关不同融合功能和可视化的广泛讨论,以验证提出的模型。
translated by 谷歌翻译